Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Restorative Dentistry & Endodontics ; : 188-194, 2015.
Article in English | WPRIM | ID: wpr-20260

ABSTRACT

OBJECTIVES: This study evaluated the effect of lactic acid and acetic acid on the microhardness of a silorane-based composite compared to two methacrylate-based composite resins. MATERIALS AND METHODS: Thirty disc-shaped specimens each were fabricated of Filtek P90, Filtek Z250 and Filtek Z350XT. After measuring of Vickers microhardness, they were randomly divided into 3 subgroups (n = 10) and immersed in lactic acid, acetic acid or distilled water. Microhardness was measured after 48 hr and 7 day of immersion. Data were analyzed using repeated measures ANOVA (p < 0.05). The surfaces of two additional specimens were evaluated using a scanning electron microscope (SEM) before and after immersion. RESULTS: All groups showed a reduction in microhardness after 7 day of immersion (p < 0.001). At baseline and 7 day, the microhardness of Z250 was the greatest, followed by Z350 and P90 (p < 0.001). At 48 hr, the microhardness values of Z250 and Z350 were greater than P90 (p < 0.001 for both), but those of Z250 and Z350 were not significantly different (p = 0.095). Also, the effect of storage media on microhardness was not significant at baseline, but significant at 48 hr and after 7 day (p = 0.001 and p < 0.001, respectively). Lactic acid had the greatest effect. CONCLUSIONS: The microhardness of composites decreased after 7 day of immersion. The microhardness of P90 was lower than that of other composites. Lactic acid caused a greater reduction in microhardness compared to other solutions.


Subject(s)
Acetic Acid , Biofilms , Composite Resins , Immersion , Lactic Acid , Water
2.
Restorative Dentistry & Endodontics ; : 23-29, 2015.
Article in English | WPRIM | ID: wpr-105473

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. MATERIALS AND METHODS: Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 x 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. RESULTS: Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. CONCLUSIONS: Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.


Subject(s)
Humans , Adhesives , Dentin , Molar , Silorane Resins , Tooth
3.
The Journal of Advanced Prosthodontics ; : 200-206, 2014.
Article in English | WPRIM | ID: wpr-53943

ABSTRACT

PURPOSE: This in vitro study investigated the fracture resistance of endodontically treated premolars restored using silorane- or methacrylate-based composite along with or without fiber or nano-ionomer base. MATERIALS AND METHODS: Ninety-six intact maxillary premolars were randomly divided into eight groups (n = 12). G1 (negative control) was the intact teeth. In Groups 2-8, root canal treatment with mesio-occlusodistal preparation was performed. G2 (positive control) was kept unrestored. The other groups were restored using composite resin as follows: G3, methacrylate-based composite (Z250); G4, methacrylate composite (Z250) with polyethylene fiber; G5 and G6, silorane-based composite (Filtek P90) without and with the fiber, respectively; G7 and G8, methacrylate- and silorane-based composite with nano-ionomer base, respectively. After aging period and thermocycling for 1000 cycles, fracture strength was tested and fracture patterns were inspected. The results were analyzed using ANOVA and Tukey HSD tests (alpha=0.05). RESULTS: Mean fracture resistance for the eight groups (in Newton) were G1: 1200 +/- 169a, G2: 360 +/- 93b, G3: 632 +/- 196c, G4: 692 +/- 195c, G5: 917 +/- 159d, G6: 1013 +/- 125ad, G7: 959 +/- 148d, G8: 947 +/- 105d (different superscript letters revealed significant difference among groups). Most of the fractures in all the groups were restorable, except Group 3. CONCLUSION: Silorane-based composite revealed significantly higher strength of the restored premolars compared to that of methacrylate one. Fiber insertion demonstrated no additional effect on the strength of both composite restorations; however, it increased the prevalence of restorable fracture of methacrylate-based composite restored teeth. Using nano-ionomer base under methacrylate-based composite had a positive effect on fracture resistance and pattern. Only fiber-reinforced silorane composite restoration resulted in a strength similar to that of the intact teeth.


Subject(s)
Aging , Bicuspid , Dental Pulp Cavity , Polyethylene , Prevalence , Silorane Resins , Tooth
4.
Restorative Dentistry & Endodontics ; : 310-318, 2014.
Article in English | WPRIM | ID: wpr-92615

ABSTRACT

OBJECTIVES: This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. MATERIALS AND METHODS: One silorane-based (Filtek P90, 3M ESPE) and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE) composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm) specimens. The microhardness of the top and bottom surfaces was measured (n = 15) using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC) of the specimens was determined using Fourier transform infrared spectroscopy (FTIR). Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. RESULTS: The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05). P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05). CONCLUSIONS: DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.


Subject(s)
Composite Resins , Ethanol , Hardness , Photons , Polymerization , Polymers , Refractometry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
5.
Braz. dent. j ; 24(3): 258-262, May-Jun/2013. tab, graf
Article in English | LILACS | ID: lil-681861

ABSTRACT

This study evaluated the temperature variation in the pulp chamber during photoactivation of two restorative composite resins (Filtek P90 silorane-based composite and Heliomolar methacrylate-based composite) with either a quartz-tungsten-halogen (QTH) or light-emitting diodes (LED) light-curing unit (LCU) and using dentin thicknesses (0.5 and 1.0 mm). Standardized cavities (2x2x2 mm) were prepared in 80 bovine incisors, which were randomly assigned to 8 groups according to the photoactivation method and dentin thickness. Filtek P90 and Heliomolar (both in shade A3) were used with their respective adhesive systems (P90 self-etch primer / P90 adhesive bond and Excite adhesive). All experiments were carried out in a controlled environment (37°C). The temperature variations (°C) were recorded using a digital thermometer attached to a K-type thermocouple. The results were analyzed statistically by ANOVA and Tukey's test (α=0.05). For composite/dentin thickness interaction, temperature increase was significantly higher in 0.5 mm dentin thickness (40.07°C) compared with 1.0 mm dentin thickness (39.61°C) for Filtek P90. For composite/LCU interaction, the temperature increase was significantly higher for Filtek P90 (39.21°C - QTH and 40.47°C - LED) compared with Heliomolar (38.40°C - QTH and 39.30°C - LED). The silorane-based composite promoted higher temperature increase in the pulp chamber than the methacrylate-based composite.


Este estudo avaliou a variação de temperatura na câmara pulpar durante a fotoativação de duas resinas compostas (Filtek P90 – compósito à base de silorano e Heliomolar – compósito à base de metacrilato) com as unidades foto-ativadoras (UFs) luz de quartzo-tungstênio-halogênio (QTH) ou diodo emissor de luz (LED) e utilizando espessuras de dentina (0,5 e 1,0 mm). Cavidades padronizadas (2×2×2 mm) foram preparadas em 80 incisivos bovinos, as quais foram aleatoriamente divididas em 8 grupos de acordo com os métodos de fotoativação e espessura da dentina. Filtek P90 e Heliomolar (ambos na cor A3) foram utilizadas com seus respectivos sistemas adesivos (Primer P90 auto-condicionante / adesivo P90 e adesivo Excite). Todos os experimentos foram realizados em um ambiente controlado (37°C). As variações de temperatura (°C) foram mensuradas usando um termômetro digital conectado a um termopar tipo-K. Os resultados foram analisados estatisticamente por ANOVA e teste de Tukey (α=0,05). Para interação compósito/espessura de dentina, o aumento da temperatura foi estatisticamente superior para a espessura de dentina de 0,5 mm (40,07°C) quando comparado com a espessura de dentina de 1,0 mm (39,61°C) para a Filtek P90. Para a interação compósito/UFs, o aumento de temperatura foi estatisticamente superior para o Filtek P90 (39,21°C – QTH e 40,47°C – LED) quando comparado ao Heliomolar (38,40°C – QTH e 39,30°C – LED). Compósitos à base de silorano promovem maior aumento da temperatura na câmara pulpar em relação aos compósitos à base de metacrilato.


Subject(s)
Animals , Cattle , Acrylic Resins/chemistry , Composite Resins/chemistry , Curing Lights, Dental/classification , Dental Materials/chemistry , Dentin/ultrastructure , Polyurethanes/chemistry , Silorane Resins/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Body Temperature/physiology , Dental Cavity Preparation/methods , Dental Pulp Cavity/physiology , Hot Temperature , Light-Curing of Dental Adhesives/instrumentation , Materials Testing , Methacrylates/chemistry , Polymerization , Random Allocation , Thermometers
6.
Braz. dent. j ; 21(6): 538-542, 2010. ilus, tab
Article in English | LILACS | ID: lil-572301

ABSTRACT

The aim of this study was to investigate the influence of different composite resins - Filtek P90 (silorane-based composite) and Heliomolar (methacrylate-based composite) - on light transmission and decrease in Knoop hardness between the bottom and top of cured specimens. The irradiance of a light-curing unit (LCU) was measured with a power meter (Ophir Optronics; 900 mw/cm2) and spectral distributions were obtained using a spectrometer (USB 2000). Twenty standardized cylindrical specimens (2 mm thick x 7 mm diameter) of each composite resin were obtained by curing using the LCU for 40 s. Light energy transmission through the composite was calculated (n=10). The Knoop hardness number for each surface was recorded as the mean of 3 indentations. The difference in Knoop hardness between the top and bottom (DKH) of the same specimen was calculated (n=10). The irradiance of light that passed through Filtek P90 (272 mW/cm2) was not significantly greater than that the passed through Heliomolar (271 mW/cm2). The DKH of Filtek P90 (25 percent) was significantly higher than that of Heliomolar (12 percent). There was a greater degree of subsurface polymerization of the methacrylate-based composite compared to the silorane-based composite.


O objetivo deste estudo foi avaliar a influência da diferença entre a dureza do topo e da base em compósitos restauradores. Foram utilizados os compósitos restauradores Filtek P90 (compósito à base de silorano) e Heliomolar (compósito à base de metacrilato). A irradiância da unidade foto-ativadodora (UF) foi mensurada com um potenciômetro Ophir Optronics (900 mw/cm2) e o espectro de luz foi obtido usando um espectrofotômetro (USB 2000). Vinte espécimes cilíndricos padronizados (2 mm de espessura por 7 mm de diâmetro) foram obtidos pela fotoativação utilizando UF (40 s) para cada compósito. A irradiância que passou através do compósito foi mensurada (n=10). O número de dureza Knoop para cada superfície foi calculado pela média de 3 penetrações. A diferença da dureza Knoop entre o topo e base (DDK) de um mesmo espécime foi calculada (n=10). A irradiância que passou através da Filtek P90 (272 mW/cm2) não foi estatisticamente superior a Heliomolar (271 mW/cm2). A DDK da Filtek P90 (25 por cento) foi estatisticamente superior a Heliomolar (12 por cento). O compósito a base de metacrilato apresentou melhor grau de polimerização na base quando comparado ao compósito à base de silorano.


Subject(s)
Composite Resins/chemistry , Light-Curing of Dental Adhesives , Acrylic Resins , Dental Stress Analysis , Hardness , Materials Testing , Methacrylates , Optical Phenomena , Polymerization , Polyurethanes , Siloxanes
SELECTION OF CITATIONS
SEARCH DETAIL